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Based on the perturbation theory with multiple scales, we have developed a technique to study the
evolution of particle distribution as a function of oscillation amplitudes in a hadron storage ring. With a
renormalization scheme for the zeroth-order term, a uniformly valid perturbation expansion for the dis-
tribution function is obtained. For localized nonlinear perturbations such as the beam-beam interaction
at colliding points, this renormalization scheme results in a functional mapping for the particle distribu-
tion and the diffusion processes of particles in the beam can be studied numerically without resorting to
the tracking of individual particles. A case involving a single nonlinear kick in the ring is presented to il-

lustrate the method in detail.

PACS number(s): 41.85.—p, 29.20.Dh, 29.27.Bd, 29.27.Fh

I. INTRODUCTION

The understanding of beam dynamics in hadron
storage rings has mostly relied on the tracking of a few
individual particles. The real beam, however, consists of
a large number of particles, typically up to 10'° per
bunch in large storage rings such as the Superconducting
Super Collider (SSC). Consequently it is inconvenient if
not impossible to study the real beam behavior by this
brute-force tracking which requires many hours of super-
computer CPU time.

Examples of such beam behavior that we are interested
in are slow-particle losses and beam-size growth due to
either field errors or beam-beam interactions. Observa-
tions have shown that the growth of tails of the particle
distribution is a serious problem as it enhances the back-
ground level in detectors. For large hadron storage rings,
the slow growth of the beam emittance is closely related
to the long-term behavior of the colliding beam. As
beams circulate in the storage ring, particles are gradual-
ly lost, and the rate of particle loss and beam-size growth
are more important than the stability of individual parti-
cles. Therefore a better understanding of these diffusion
processes should be based on the study of the multiparti-
cle system.

One way to describe the multiparticle system is
through a use of the single-particle distribution in the
transverse phase space. In fact, it has already been done
for the study of beam dynamics in high-energy electron
storage rings but the behavior of the particle distribution
in hadron storage rings is not yet understood theoretical-
ly. This is due to the different behavior of the particle
distribution in the transverse phase space in two cases.
For a high-energy electron beam, because of the dom-
inant radiation effect, the time scale for a beam to reach
the equilibrium distribution is much less than the storage
time. Consequently, the study of the beam dynamics can
be focused on the behavior of the distribution near its
steady states [1,2]. For a hadron beam, however, the
damping time scale is substantially larger than the
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storage time so that the motion of particles can be de-
scribed by the Hamiltonian formalism. In the presence of
nonlinear perturbations due to either field errors or
beam-beam interactions, the particle distribution may not
reach any steady state within a fraction of the storage
time and this makes it important to study the time evolu-
tion of the distribution.

In most cases, the strengths of high-order multipole
field errors and beam-beam interactions are small
enough to be treated as a perturbation. A straightfor-
ward approach is the expansion of the distribution func-
tion in powers of the perturbation strength. This method
has been used to study the evolution of the distribution
with the Fokker-Planck equation [3]. However, it can be
shown that this Poincaré-type expansion breaks down in
the infinite domain so that the validity of the expansion is
limited. In order to obtain a uniformly valid perturba-
tion expansion, we introduce a perturbation expansion
with multiple scales [4]. For localized multipole-field er-
rors and beam-beam interactions, this treatment results
in a renormalization scheme for the zeroth-order term of
the expansion. As a result, the evolution of the distribu-
tion on amplitudes can be expressed by a functional
mapping.

In this paper we describe the perturbation technique of
multiple scales for the study of the evolution of the parti-
cle distribution in the transverse phase space in hadron
storage rings. This technique can also be applied to the
particle distribution in longitudinal phase space. In Sec.
II the single-particle distribution function and its Vlasov
equation and Fokker-Planck equation are introduced.
The failure of the straightforward perturbation expansion
is explained in Sec. III. In Sec. IV we establish a
multiple-scale expansion for the Vlasov equation and the
Fokker-Planck equation. An illustration for this tech-
nique is given in Sec. V. In Sec. VI we discuss the
Gaussian-distribution approximation which can simplify
the numerical computation. Section VII contains sum-
mary and final remarks. In what follows, “distribution”
refers to the single-particle distribution in the transverse
phase space.
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II. EQUATION FOR THE DISTRIBUTION FUNCTION

In terms of action-angle variables (I,¢), the Hamiltoni-
an for betatron motions in a ring of circumference C can
be written as

H(I,$,0)=v-T+U(\V/2I,B\cosy;, V2L, Bycosth,,0) , (1)
where
,/,i=¢i_vi9+£fgid9, i=1,2. (2)

27 Jo B;

The independent variable 6 is defined as the path length
of the reference orbit divided by C(2/7). In this paper,
vectors are used to denote two-dimensional variables
describing the motions in vertical and horizontal planes.
Here we assume that there is no linear coupling. S(6)
are Courant-Snyder beta functions of the linear lattice.
The action-angle variables used here are related to the
Cartesian phase-space coordinates (x;,x;) by the equa-
tions

x; =(21,8;)"*cosy; , (3)

4

— (21, /B;) )172 siny; — — cos¢, , i=1,2, (4)

where the prime denotes derivatives with respect to
(6C /27w). When there is a tune modulation, the trans-
verse tunes v are a function of 6. The nonlinear perturba-
tion U represents either beam-beam interactions or field
errors. We assume that the actions of the nonlinear per-
turbation can be approximated by kicks in the transverse
plane, i.e.,

U=3 UR(\/2I B cos;, V' 2I,B,co8¢,)8,(0—6,) ,
k

(5)
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where 0, are the locations of kicks and

8.(0—0,)=3 8(6—06, —2mn) . (6)

Consider a beam consisting of N particles. If we
neglect intrabeam collisions, the phase-space distribution
of particles can be described by the single-particle distri-
bution f (I, ¢ 0), which satisfies the Vlasov equation

Sf 16y 2L =

30 a6 ={U,f}, (7

where { } is the Poisson bracket.

If the nonlinear perturbation comes from field errors,
U is independent of the particle distribution f. In the
case of beam-beam interactions with the strong-weak
model, the strong beam acts as a nonlinear lens located at
collision points. As far as the distribution of weak beam
f is concerned, U is also independent of f. In such cases
we can rewrite the Hamiltonian Eq. (1) in the form

H(T,$,0)=v-T+Uy(T,0)
+ U, (V21 ,Bcosty;, VvV 21,B,,c081,,6) ,  (8)

where U, is that part of U which depends on the ampli-
tude only,

= U(\/2]1B10081/J1,\/212B200s¢2,9))(;*, 9)
and
Uu,=U0—-U0,. (10)

The Vlasov equation (7) is reduced to

af 8Uo of
+ |M6)+ —=={U,,
2 .
= _ ’ =172 172 ,
igl{ vV B;u; |(2I,) cos(y;) a¢z +(21;)"/“sin 1/},)81 ]f, (11)

where u;=0oU,(x,,x,,0)/0x;.
tion now.

Since H

In the case of two strong colliding beams, the distributions ‘!’

=y-I+ UO(T ,0) is an integrable system, U, can be regarded as the perturba-

and f@ of the two beams influence each other ac-

cording to the Vlasov equation in which the beam-beam perturbation for one beam is a functional of the distribution of
the other beam. Two coupled Vlasov equations are given by

a§;1)+76) af¢ {U[f(Z)],f(l)}

f(l
2cos(¢;) +(2I;) ’/251n(¢v,

2 —_—
=— @)~
igl VB’ ( ! ) a¢l

Cu s (12)
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together with another equation with indices 1 and 2 ex-
changed, and u;[f]=09dU(x,,x,,0)/3x; is a linear func-
tional of f. For a head-on collision,

U()‘c’)=afow%f_wwdgdf’f(ff’,e)e_17_3‘2”2 ., 13)

where a is a constant, a =4e2N /(ymc?) for p-p colliders.

In order to express Egs. (11) and (12) in a single form,
we define a functional vector f=(f'"), f®)) to denote the
distribution functions of two colliding beams. Then, the
Vlasov equations (11) and (12) can be expressed as

of . of
+
0 3¢

For field errors or beam-beam interactions in the
strong-weak model, f=(f,0), «(0,1)=v(0)+3U,/dl,
and Tof={U,,f}. For beam-beam interactions
in the strong-strong model, &@(0)=%60) and
TfO={U[f/],f ]} with i,j=1,2, j7i.

If we consider noise and damping, the equation of the
distribution is described by the Fokker-Planck equation

(5]

—=Tof . (14)

gg FLppo f=Tof , (15)
where To f={U, f} and Lgp is the linear Fokker-Planck

operator. In normalized variables,

2 82
L +—( 2a;m;—v;§;)—Di—
e 1§1 agl 37712

>

(16)

where & and D are dampmg and diffusion coefficients, re-
spectively. When @=0 and D =0, Eq. (15) reduces to the
Vlasov equation (14) with Lgp=1(6).

If we know the evolution of the distribution by solving
the Vlasov equation (14) or the Fokker-Planck equation
(15), the rms beam size can be evaluated from

()= [Trdldg= [I(f)zI , 1

where ); denotes the integral with respect to ¢. In
general, neither the Vlasov equation nor the Fokker-
Planck equation can be solved exactly for the nonlinear
system of Eq. (1). By inspecting Eq. (17), however, we see
that the particle distribution on amplitudes alone is re-
quired for our purpose; the Vlasov equation and the
Fokker-Planck equation contain more information than
is needed. By removing the unnecessary information, the
problem may be simplified and easily handled with per-
turbation methods.

III. STRAIGHTFORWARD
PERTURBATION EXPANSION

In many practical problems, the nonlinear perturbation
on the right-hand side of Egs. (14) and (15) can be treated
as small in some sense, i.e., the strength of the perturba-
tion can be used as a small parameter for the perturba-
tion expansion. Thus we assume that the distribution
function can be expanded as
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f(1,4,0)= 3 ef,,(I,$,60), (18)
m =0
where €~||U||, and, for an initial distribution
f(I, ¢ ) f.(1, ), the initial conditions of f m are
£o(1,4,0)=f;, (L) , (19)
m(1,¢,0)=0 for m >0 . (20)

In the case of beam-beam interactions in the strong-
strong model, because of the linear dependence of U on
the distribution [see Eq. (13)], T can also be expanded as

T= 3 €'T, , (21)

m =0
where T, ={U[f,,],}. For field errors or beam-beam
interactions in the strong-weak model, T,={U, }

(To={U,, } for the Vlasov equation) and T,,=0 for
m >0.

Substituting Eqgs. (18) and (21) into Eq. (15) and equat-
ing coeflicients of equal powers of € to zero, we obtain

af,
—aé_+LFP° f0=0 y (22)
af,

FY) +LFP° f1 TOO f() ’ (23)
5 +LFP° f2:T0° fl +T1° fo (24)

Since for any function f
[ (T, frdédi=0, vq, (25)
the normalization condition of the distribution
[dragra,6,0)= [dldg f(T,4,0)=1 (26)

is guaranteed in this expansion.
After all f;’s for i <(q —1) are known, the gth-order
equation for f, takes the form
af,
w + LFP° fq =F(
For the initial condition f, I, #,0) in Egs. (19) and (20),
the solution of Eq. (27) is

f1,6,0)

1,4,6) . 27)

= [dI'd$"G,(I,T',¢—¢",0)f,(I",¢",0)
+ [deo [dI'd$'G,(I,I",6—¢",6—6")
XF(I',¢",0"), (28)

where G, is the Green’s function of Eq. (27) [5],

G,(I,I'$—¢"',6—0)=G,(I,,I},¢;—

XGI(IZ’II?.’¢2

$,,0—6)
—$5,0—0"), (29)

with
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1

G,(I,I/,¢;,—¢;,6—0")=

exp{ —24;[I,+1I/e

— T_T1 g o_, Y
=8(~1")8 (¢~ [ 'ardr—4 ] , (32)
and Eq. (28) reduces to
£,(L6,0=f, [f,a— fogc?)(r)dT,O]
0 (= — o_,
+['F [I,¢—f11w(7'2)d'rz,7'1 ]drl R

By solving these expansion equations order by order, we
obtain a truncated sequence of f. Since

(£,(1,4,0)) 5= [dI'(G,(I,1",6,0)) ;(£,(I",$,0))
+ [de [dI'(G,I,I",0—6));
X(F(I",6,0))5, (34)

if there is a secular term (F )z#O, f, is proportional to
6 for the perturbation in Eq. (5). Consequently, the
straightforward expansion of Eq. (18) breaks down when
6~0(e™ ') since, beyond that, the condition for a uni-
form asymptotic sequence |f "/f{) |< o for i=1,2
cannot be satisfied. With Eqs. (22)-(24) it can be easily
shown that the secular terms are generic in these expan-
sion equations. Thus the straightforward expansion is
not valid for our problem. As a matter of fact the ap-
pearance of the secular terms is a characteristic of non-
linear problems. In order to obtain a proper perturbation
expansion, these secular terms must be eliminated sys-
tematically.

IV. MULTIPLE-SCALE EXPANSION

Equation (17) shows that for the study of particle loss
and beam-size growth, only the particle distribution on
amplitudes is required. Thus the average with respect to
phase ¢ can be utilized to cure the nonuniform problem
due to the secular terms. In order to obtain a truncated
expansion valid for all times up to O (e~ *), we introduce

a set of multiple time scales ¢y,¢,, . . . , ), Where
t,=€"8, m=0,1,...,M . (35)
In general, the time scale ¢, is slower than ¢,, ;. Instead

of using the expansion (18), we assume that

—a;(6—6")
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—a.(0—¢
2(1»1-’6 al( e))l/l

[t}

cosd; 1} , (30)

£(1,8,0)=F(I,8,t0,t,...,ty)
M—1 N
=3 €f,,(I,d,t0,t, ... 1)+ O0(M) .
m=0

(36)

Here the truncated expansion is assumed to be valid only
for times up to O(e™ M), Beyond that, other time scales
must be included to keep the expansion uniformly valid.
By using the chain rule, the derivative with respect to 6
can be transformed into the derivatives with respect to
{t,,} according to

d L

—= en—. (37)

a0 m2=0 at,,
Substituting Egs. (36), (37), and (21) into Eq. (15) and
equating coefficients of equal powers of € on both sides,
we obtain

i)

—i"—+LFpo f,=0, (38)
ot

30 T, e fi=Te o, (39)

af, of, af,
aty +—a?+—E;Z—+LFP° f2=Tee f1+Tef,. (40

Since Eq. (25) is still valid here, the normalization condi-
tion Eq. (26) is also guaranteed in the expansion (36).
Now, in the gth-order equation, we can choose

g of,_, i}
3 T—<m2=OTqu_m_,>$, 41)

m=1 m

to eliminate the secular terms. As g is greater than one,
the dependence of f, on {t,|m=1,...,q} is under-
determined so that we can select a particular set of equa-
tions

o <q§ T, f > 42)
= m —m—1[>>

atq m =0 ! ¢

af; .

—5I—=O for i,j>0 . (43)

J
Consequently, { f,, >¢7»=0 for m >0, and the zeroth-order
term f, is renormalized by including in it all phase-

independent parts of the distribution function. If the ini-
tial distribution depends on amplitudes only,

(D3=3 e™(£,)5=" (44)

m=0

so that f, contains all the information needed for the
study of particle losses and beam-size growth.
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V. AN ILLUSTRATION

To illustrate this theory, we consider a simple case in
which @=0, D=0, and there is only one nonlinear kick
located at 6=0, either due to multipole-field errors or
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fo=f o, ty, - .-). Thus, in the first-order perturbation,
fo(I )=f m(I ) i.e., there is no beam-size growth in the
first-order perturbation and we must consider the
second-order term. From Eq. (33), f 1 is obtained as

beam-beam interaction in the strong-weak model, [6/27] 2 \a
_ =— 3 3 QBI) sm(¢,,, u (n), (50)
U=U"2I,Bcosd,,V 2I,B,c08¢,)8.(0) . (45) n=0 i=1 I;
The initial distribution is assumed to be phase indepen- ~ Where [6/27] is the integer part of 6/2,
dent b2 =buti)=¢~ [ d(ridr, 5D
—- - — n
f,¢,00=f,(I) . @6) d
From Eg. (38_? we have u,-(n)=u,~(\/?ITB—ICOS¢n1’\/MCos¢,,2) .
Jo=FfolLtit ) “7) Substituting f, and f, into Eq. (40) and using Eq. (42) to
Inserting this result and Eq. (45) into Eq. (39), we get eliminate the secular terms, we have
of, df 0, of, of
— t—+a(0)— 2o _(yy©o N
ot, atl ¢ at, ({ f1} >¢8c(9) . (52)
=— 2 (2B,1;)*sing; Lu 8.(60), (48)  Since we did not specify the strength of multipole-field er-
i=1 rors or the parameter of beam-beam interaction separate-
where ly from the perturbation U'?, € is used here simply to
track the order of the perturbation expansion. In the
u;(V/ 2I,B,cosd,,V 2I,B,c08,)=0U%x,x,)/0x; , final expansion, € should be taken as unity. To the
. second order in the strength of U, we have
for i =1,2. Since
(u;sing; );=0, (49) O = U YYDy, (53)
there is no secular term in Eq. 48), 9f,/0t,=0, and with
|
U, 7)) 5 ostht Ky )V
(U™, 1) g E B; al, ——cos(,; ) u;(n)u;
21 a1, 3,' Bil;sin(p, ;) sin(,; Juy;(n)u; )y
+V/2B,1,V/2B,1;D,;(sin(¢; )cos(,,; Ju;(n)u; )5
2
= 3 V2B.1,V 2B;1;V 2B, I D (sin(@; )sin(@ ,; )sin( . Ju . (n)u; g
k=1
M
+ 2 V28IV 2B,1, o, aI s (sin(g))sin(d, Ju (n)u; ) (54)

i=1

where i, = [ &(r)dr, D ij = — (U, /3I,31;)(6—2mn),
and u;;=0u;/0x;. M=[6/2m] is the number of turns
and the superscrlpt M denotes the distribution function
after M turns. Equation (53) is a functional mapping for
the evolution of the particle distribution on amplitudes.
For a given initial distribution, the evolution of the distri-
bution on amplitudes as well as the evolution of beam
size can be studied by iterating this map with computer.
From Eq. (53), the physical meaning of the technique
of multiple scales is quite clear. Each time the beam
passes through a weak nonlinear kick, its distribution is

perturbed slightly. However, only the phase-independent
part of this change in the distribution is relevant to the
problem of particle loss and beam-size growth. Therefore
after each kick we use this phase-independent part of the
change in the distribution to renormalize the zeroth-
order term of its expansion, f,. The phase-dependent
part is eliminated by taking average over ¢. A uniformly
valid perturbation expansion is therefore obtained by
reexpanding the distribution with this update zeroth-
order term after each kick. This renormalization scheme
results in the functional mapping (53) in which only ac-
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tion variables I are involved. In comparison with the
direct simulation of particle distribution in phase space
[6], this scheme greatly simplifies the numerical compu-
tation.

It should be pointed out that the result to the second
order in the strength of U is only valid for the “time” up
to O(||U||"?). For the beam-beam interaction, the
beam-beam parameter is typically of the order of 1073 in
larger colliders such as SSC. This corresponds to
10°-10° turns and, beyond that, the next order terms
must be taken into account.

In order to check the formalism, we consider a beam
near the difference resonance of a single sextupole kick,
ie.,

vi—2v,=1, (55)

where />0 is an integer. The nonlinear perturbation of
the Hamiltonian can be approximated by the resonance
Hamiltonian

U= —eI' 2L, cos(¢,—26,)5,(6) . (56)

Since 21, +1, is a constant of the motion for U'” of Eq.
(56), the rms beam sizes in two directions also satisfy

2(1,)+{I,)=const . (57

Assume that the beam is a round Gaussian beam initially.
After substituting Eq. (56) into Eq. (53), the evolution of
rms beam sizes, as shown in Fig. 1, and the change of the
particle distribution on amplitudes, as shown in Fig. 2,
were easily obtained. It can be seen that Eq. (57) is
indeed held here. Figure 1 also shows a good agreement
between the result of the mapping (53) and the result of
multiparticle tracking [7].

2.0 ————— T
[ v,=1.65, v,=1.825
o
Q 1.5
A b h
Q b ]
- [, 1
'\_‘/ 1.0 [ c ]
[ d ]
0.5 —
0 500 1000

turn

FIG. 1. The evolution of rms beam sizes when the beam is on
a difference resonance. The beam is a round Gaussian beam
with a rms beam size oy initially. The upper two curves are
(I,) and the lower two {I,). Curves a and d are the result of
the map (53) with the nonlinear perturbation of Eq. (56).
Curves b and c are from the tracking of 5000 particles with a
single sextupole kick, eo}’>=0.001.
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Tryrrrrrrrrrrrp oy
v,=1.65, v,=1.825 ]
turn=1000

2 3
/a0,

FIG. 2. The change in the particle distribution as a function
of the amplitudes for the same case as in Fig. 1. The solid
(dashed) curve is the difference between the distribution on I,
(I,) at 1000 turns and its initial distribution.

VI. GAUSSIAN-DISTRIBUTION
APPROXIMATION

Experimental observations show that the particle dis-
tribution in hadron colliders remains approximately
Gaussian if it is initially Gaussian [8]. As the beam cir-
culates in the ring, this distribution is gradually distorted
with a growth of the distribution tail. In this case we can
further simplify the functional mapping (53) for numeri-
cal computation by approximating f¥ in Eq. (54) as a
Gaussian distribution

1 I, I,
M — — —exp|———— |, (58)
Jo (277')2011”091 P M oM
where
M= [Iridr . (59)

The mapping for the evolution of the distribution on am-
plitudes can be greatly simplified for the numerical com-
putation, since we now have

af s 1 .um

=—— 6
al; o fo (60
Pre 1y ©1)
AL, gMoM O

VII. SUMMARY

Using a perturbation expansion with multiple scales,
we have solved the Vlasov equation and the Fokker-
Planck equation in the time domain for the particle dis-
tribution in hadron storage rings. In order to eliminate
secular terms in the expansion, we renormalize the
zeroth-order term of the expansion by including in it the
phase-independent part of the perturbed distribution.
The phase-dependent part of the distribution function is
eliminated by taking average with respect to angle vari-
ables. As a result, the zeroth-order term represents the
particle distribution of amplitudes. For localized non-
linear perturbations, this renormalization scheme is re-
duced to a functional mapping for the evolution of the
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distribution of amplitudes. In this mapping, only action
variables are involved so that the evolution of the particle
distribution and the beam size can be easily studied by
numerically iterating the mapping. One advantage of
this method is that we can treat beam-beam interactions
in a self-consistent manner.

When the system is close to major resonances, the per-
turbation expansion of the distribution function may not
converge. A typical example is the resonant extraction.
In this case, the beam is strongly perturbed and the parti-
cle distribution in phase space is determined predom-
inantly by a single, low-order resonance. The perturbed
distribution may deviate too far from its unperturbed
form to be considered within the framework of perturba-
tion theory. Furthermore, in the resonant extraction sit-
uation, the distribution in phase is as important as the
distribution in amplitude. Therefore the perturbation ex-
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pansion involving the averaging over phase will emascu-
late the physics in such a situation. Large storage rings,
however, are generally operated far from all major reso-
nances. The important problem of our concern here is
the slow-particle loss and the beam-size growth due to
weak nonlinear perturbation, which comes primarily
from high-order resonances, and the description based on
the particle distribution is more meaningful.
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